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The averaged scalar product, P, of the dynamical system flow vectors evaluated along the trajec-
tory is shown to be a very simple, efficient, and useful quantity for the purpose of selecting adequate
embedding dimensions and time delays. The effectiveness of the method is shown in different exam-
ples, such as ordinary differential equations, delayed differential equations, and experimental time

series.
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I. INTRODUCTION

In the last few years ideas from nonlinear dynamics
have lead to improvement in the study of experimental
time series. Often, the time evolution of complex dynam-
ical systems can be approximated with low-dimensional
nonlinear models. Those models can yield a better un-
derstanding of the system or can be the starting point for
forecasting procedures. In this paper we focus our atten-
tion on deterministic dynamical systems from which only
a univariate time series is available. This is a common
situation which occurs in many situations in natural and
social sciences.

A deterministic state-space reconstruction for the sys-
tem is an embedding of the measured time series. We
can say that an embedding is a smooth map from the
original time series to a multidimensional space such
that points and tangent vectors maintain their indi-
viduality. State space is normally used to represent a
multidimensional space of the original time series con-
structed with any mapping. If the original dynamical
system is deterministic, the embedding produces a par-
ticular state-space that is also deterministic. The aux-
iliary variables usually chosen to create state spaces are
time delays of the measured variable [1-3]. Given the
time series z(t), the state-space reconstruction is given
by x(t) = (z(t),z(t — T),...,z(t — (d — 1)T)), where T
is the time delay and d is the dimension. This state-
space reconstruction may be embedded in a d dimension
if d > 2m as proposed by Takens [2], with m being the
dimension of the manifold on which the original dynam-
ical system evolves. Sauer et al. [4] showed that under
certain conditions the state space may be embedded in
d > m. An estimate of m can be obtained by means of
the correlation dimension [5,6]; for a rigorous result see
[7]. Therefore, each state-space reconstruction is charac-
terized by the values {T,d}.

Proposed methods [8-11] to approximate the embed-
ding with state spaces pay attention to state-space points
and they do not take into account the flow vectors. Cas-
dagli’s method [12] comes directly from the forecast prob-
lem. In this work we are going to consider flow vectors
rather than state-space points, as was proposed by Ka-
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plan and Glass [13] for discrimination between random
and deterministic time series. We base our approach on
this idea.

The basic idea is very simple: an appropriate em-
bedding should avoid self-crossings of the reconstruction
space trajectories. An obvious measure of such a cross-
ing at a given point is the average inner product of the
flow vectors in a neighborhood of that point. It is ob-
vious that crossing trajectories will have crossing flows;
thus, since at self-crossing points normalized flow vectors
will have a scalar product different from one, it is rea-
sonable to use scalar products between normalized flow
vectors to quantify the degree of self-crossing. In order to
get a global quantification of the degree of self-crossing
along a complete reconstructed trajectory, we average
the above inner products along that trajectory. A state
space where the global average is extremely close to one
will be a good approximation to the deterministic state
space. Lower values of this global average will indicate
sizeable self-crossing and, therefore, poorer state-space
reconstructions. An important point is that this mea-
sure of the average scalar product is performed after a
transformation by singular value decomposition, and so
the measure is made in similar conditions for any state-
space reconstruction.

A search of maximal P has been performed in the
{T, d} space for a time series extracted from Rossler and
Mackey-Glass. Very similar results have been obtained
for the Lorentz attractor and the Henon map, but these
examples will not be exposed here. Also, an experimental
time series proposed by the Santa Fe Institute has been
studied.

II. QUANTIFICATION OF THE SELF-CROSSING
DEGREE IN A TRAJECTORY

In order to estimate the average scalar product along
the trajectory, we associate to a generic point x; = x(i4),
where A is the sampled interval, of the reconstructed
state space a set of neighboring points O(x;), that belong
to a closed ball of dimension d and radius e. That is,
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O(xi) = {xj : ”xi _xj” <e .7= 15'"7N1 J# 1‘}’

where ||...|| is the Euclidean norm and we call p; the
number of points in O(x;).

There are two main problems when implementing this
idea. On the one hand, the radius of the d-dimensional
sphere, €, over which the average is performed. For those
cases where a degree number of points is available, a lo-
cal approximation to the flow around the studied point
would be obtained for a very small e. However, the
amount of data available is normally limited, and there
are practical constraints to the reduction of the radius
size. For a given time series, the study could be car-
ried out by fixing either the radius size or the number
of points belonging to the set O(x;). We have decided
to fix the radius e for every state-space reconstruction
of a given time series. A rough method of estimating a
useful € value will be given below considering a uniform
distribution of points.

On the other hand, there is a difficulty for those time
delays where state-space points collapse close to the iden-
tity line. For instance, when T' — 0 and for a fixed €, we
may have too many points in O(x;). In order to avoid this
problem, we rotate and scale state-space reconstructions
using singular value descomposition [14]. In the trans-
formed coordinates the average number of points in O(x;)
is similar for any state-space reconstruction, {T,d}, be-
cause the attractor has the same variance in any axis.
Therefore, state-space points are rotated using the prin-
cipal component axis (PCA: x — y) and each coordinate
is scaled (z; = yi/v/A;, where ); is the variance) to the
standard deviation of the new axis.

With these new points, z;, the normalized flow vectors
are calculated as

Z;11 — 2Zj
f(z,)= 2+1 %5
)l Pa——

and the mean flux vector value, V;, inside the set O(z;),
is given by

Vi = l Z f(z]-). (2.1)

i g €000
Finally, the scalar product is averaged along the trajec-

tory using the expression

N

1
P = —N Zf(z,)v,

=1

(2.2)

We can intuitively describe the above set of calcula-
tions as a travel along the trajectory with a tube of ra-
dius, ¢, averaging the scalar product with all the flows
inside this tube.

As previously mentioned, the estimate of P would be
more accurate for low values of ¢, provided there is a large
enough number of points in O(z;). It is useful to give a
starting value of e. This value can be adjusted in order to
perform more accurate measurements. For a time series
having a uniform distribution of points covering the state
space, we can calculate the value of ¢ needed to obtain
a number of points, ng, falling inside the closed ball of

radius € (see the Appendix),

where N is the total number of points available in the
time series. Although the distribution of points on an
attractor is far from uniform, we assume uniformly here
to get a rough estimate.

The value of the averaged scalar product, P, is a func-
tion of T and d for the set of possible state spaces drawn
from the original time series. The procedure that we
have found to be more accurate to determine the opti-
mum {T, d} values consists of maximizing P as a function
of d for a fixed T value. It is expected that P will reach a
plateau or an asymptotic value when approaching a large
enough dimension. In a second step the optimum T value
is calculated by maximizing P for the d value previously
determined.

A brute force implementation of the averaged scalar
products along trajectories will imply operations of the
order of N2. This is due to the fact that the distance
from a point z; to the NV — 1 remaining points have to
be determined. However, the computational cost is re-
duced if the calculation of these distances, required to
determine the set O(z;), is reduced to determine the dis-
tance between z; and those values z;, for which the first
component satisfies 29 — € < z? < z? + ¢, where € is the
radius of the sphere. To do that, the first component
of z; is sorted in increasing order and only those points
which satisfy the above relationship are used to evaluate
the distances. In this way the number of operations is of
n(e)N where n(e) is the number of points contained in
the above inequality.

III. EXAMPLES

The method proposed in this work has been tested in
three different types of times series. The first one is ob-
tained from a set of three ordinary differential equations,
the second one is obtained from a delay differential equa-
tion, and the third one is an experimental series.

A. Réssler attractor

The set of nonlinear ordinary differential equations
(ODE’s) [15]:

:i":_z_y,

y=2z+ay, (3.1)

z2=b+z(x—c),

with parameter values a = 0.15, b = 0.20, and ¢ = 10.0,
have been used to generate z(t). These ODE’s have been
integrated with a Bulirsch-Stoer method with a fixed
time step of 7/100. Given a Poincaré section the av-
erage number of steps needed to cross it since the last
crossing is 193.3 steps, we call this the average period of
the attractor. This quantity is noted Ty and it is used as
a time unit in what follows. A value of ¢ = 0.1 was used
and 10000 sampled points were used. Initial conditions
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FIG. 1. Estimation of the dimension for Réssler attractor,
P as function of the dimension for ¢ = 0.1.

are not relevant since the system is ergodic.

In Fig. 1 we present a plot of the average scalar prod-
uct P as a function of the dimension d for T = 4. It is ob-
served that for d > 2 | the average scalar product reaches
a plateau. Therefore, we take d = 3 as the embedding
dimension. You can see from the ordinary differential
equations that the Rossler attractor is embedded in di-
mension three and its fractal dimension obtained from
the Lyapunov exponents is around 2.01. Therefore there
is a good agreement with what is expected.

In Fig. 2 we plot P as a function of T for d = 2,3, 4.
It is seen that low values of T € (0,0.45), are those for
which P is maximum. Regions with low P appear around
time delays commensurable with the mean period of the
attractor.
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FIG. 2. Variation of P as function of T for Rossler attrac-
tor. The solid line is for d = 2, the dashed line is for d = 3,
and the dotted line is for d = 4.
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FIG. 3. Estimation of the dimension for Mackey-Glass sys-
tem, P as function of d for € = 0.1.

B. The Mackey-Glass system

Consider the delay differential equation

. o
& = —vyz(t) + Bz(t T)gn T
which is a well-known model for the white blood cell pop-
ulation in humans [16]. We have integrated the equation,
with parameter values y = 0.1, 3 = 0.2, § = 1, n = 10,
and 7 = 30, with a Bulirsch-Stoer method. The trajec-
tory is sampled with 10 000 points and the average scalar
product is calculated with € = 0.1.

The estimated dimension, m, for this system is around
3.6. We can see in Fig. 3 that d = 4 is beginning to reach
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FIG. 4. Variation of P as function of T' for Mackey-Glass
system, for d = 5.
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FIG. 5. The time series proposed by the Santa Fe Institute,
which was measured in a physics laboratory [17].

the plateau. We conclude in this example that d =5 is a
good estimation for the embedding dimension. The plot
of P versus T presented in Fig. 4 has a maximum at
T =~ 30, which coincides with the 7 parameter used to
integrate the equation.

C. Experimental time series

The noise-free studied time series, of which a short
sample is plotted in Fig. 5, is the result of a measurement
in a physics laboratory, and was proposed in the Santa
Fe Institute time series competition [17]. We used the
1000 points available in the series, and ¢ = 0.2 for the
calculation of P.

In Fig. 6, P versus d for T = 2 is shown. The profile
of this curve is not as simple as those obtained for model
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FIG. 6. Estimation of the dimension for an experimental
time series, P as function of d for T' = 2 and € = 0.2.
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FIG. 7. P as function of T for d = 6 in the experimental
example.

trajectories. However, an embedding dimension around
6 seems reasonable. The analysis on the optimal time
delay is located between 1 and 6 steps as seen in Fig. 7.

IV. THE EFFECT OF NOISE

Often, experimental time series are contaminated with
non-negligible noise. It is of practical relevance to charac-
terize the robustness against noise of any procedure for
state-space reconstruction. We have studied the effect
of noise in the state-space reconstruction guided by the
average scalar product. The Rdssler attractor has been
used for this purpose and white noise of 28 dB has been
added to the z(t) time series, used for the calculations in
example A.

In Fig. 8 the plateau is reached for d =4 when T =1
and € = 0.1. The comparison of this result with the one
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FIG. 8. P as function of d for Réssler attractor with 28 dB
of white noise added with T'=1 and € = 0.1.
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FIG. 9. P as function of T for d = 4 in Réssler attractor
with 28 dB of white noise added with € = 0.1.

obtained in example A shows that the presence of noise
leads to a greater dimension than before. To understand
this it is important to remember the work of Broomhead
and King [14]. In this work when a rotation in the state
space is performed by means of PCA, the determinis-
tic subspace is separated from the stochastic subspace.
Therefore in Fig. 8, since a rotation by PCA has been
performed on the original state space we find that for
d < 4 the stochastic subspace is not separated from the
desterministic subspace and the state-space reconstruc-
tion is not good. The dimension d = 4 is the minimum
for a good state-space reconstruction in the Rdossler at-
tractor. As shown in Fig. 8, our method gives precisely
4 as an adequate dimension for a good state-space recon-
struction. We can also see in Fig. 9, as in the case of the
noise-free time series, that the smallest T' values are the
best for reconstructing the state space.

V. RELATIONSHIP BETWEEN THE
DEGENERACY OF P AND THE LYAPUNOV
EXPONENT

It is worth mentioning the observed relation between
the slope of the average scalar product when the time
delay is varied and the Lyapunov exponent in Fig. 10.
In the Rossler attractor, the control parameter [c in Eq.
(3.1)] allows a change in the Lyapunov exponent of the
attractor trajectories. We calculate the average scalar
product P for different values of the Lyapunov exponent
and dimension d = 3. We have seen that for nonchaotic
dynamical systems there is no degeneracy in the aver-
age scalar product for increasing values of T. When we
are dealing with chaotic dynamical systems, we experi-
mentally observe how P degenerates when increasing the
maximun Lyapunov of the system (see Fig. 10). The
mathematical equation which explains this behavior has
not been figured out, but this phenomena is closely re-
lated to the concept of irrelevance, that is, the degeneracy
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FIG. 10. Variation of P as function of T for different Lya-
punov exponents of the Rossler attractor.

of the state-space reconstruction with increasing values
of time delays for chaotic dynamical systems, coined by
Casdagli et al. [18].

VI. DISCUSSION

Flow analysis on state spaces reconstructed from a
time series is a useful perspective for representing time
series. In particular, we may conclude that the average
scalar product along trajectories can be used to select
near-optimal time delays and dimension for state-space
reconstruction.

For time series originating from a system of ODE’s,
the proposed method provides empirical evidence for the
fact that small time delays are the best selection for state-
space reconstruction. Also, when delay differential equa-
tions are used to generate the time series, the time delay
used in the integration is singled out by the analysis.

We also find it quite useful that flow analysis gives a
measure of time series chaoticity. In particular, P de-
creases with the time delay with a slope related to the
Lyapunov exponent. An interesting problem for further
study is the quantification of the Lyapunov exponent by
means of the degeneracy of P.
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APPENDIX

We estimate here the € value for a uniform distribution
of points in the state-space reconstruction. We imagine
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that all points, N, are within a sphere of radius R whose
volume is given by

V(R) = C(d)R?,

where C(d) is a constant. Therefore, the ratio of the
number of points, ng, within a sphere of radius € to the
total number of points can be obtained by using

7=
N \R/~
The value of R can be determined from the variance along
any axis and, as we are considering an isotropic distribu-

(A1)

tion, then the probability distribution depends on the
(d — 1) surface of the d sphere

A2 = foR r2pd=1dp R d A
foRTd‘ldr B <m> (42)

Since the state-space reconstruction was scaled to A = 1,

the R value can be obtained from Eq. (A2) and substi-
tuted into Eq. (A1) from which € can be determined,
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